Flow control effect of necrostatin-1 on cell death of the NRK-52E renal tubular epithelial cell line

نویسندگان

  • Jialun Luo
  • Yiming Tao
  • Xinling Liang
  • Yuanhan Chen
  • Li Zhang
  • Fen Jiang
  • Shuangxin Liu
  • Zhiming Ye
  • Zhilian Li
  • Wei Shi
چکیده

Apoptosis and necroptosis occur in renal tubular epithelial cell (RTEC) death in acute kidney injury (AKI), and may be regulated by several methods. The present study identified a protective effect of necrostatin‑1 (Nec‑1) on RTECs via a flow-control-like effect. The results established a hypoxic‑ischemic injury model of rat NRK‑52E RTECs using tumour necrosis factor‑α followed by ATP depletion with antimycin A and the pan-caspase pathway blocker, benzyloxycarbonyl-Val-Ala-Asp-fluoro-methylketone. Following pre‑treatment of cells with Nec‑1, cell organelle inflation, fragmentation inhibition and improved cell viability were observed with a parallel reduced expression of microtubule‑associated protein 1A/1B‑light chain 3‑II. Nec‑1 was involved in flow control in the process of cell injury and death. In conclusion, the present study indicated that Nec‑1 provides a protective effect and serves an important role in the prevention of AKI in an NRK‑52E cell model. Further studies will be required to fully investigate the role of Nec‑1 in the development of AKI in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Necrostatin-1 Attenuates Ischemia Injury Induced Cell Death in Rat Tubular Cell Line NRK-52E through Decreased Drp1 Expression

Necrostatin-1 (Nec-1) inhibits necroptosis and is usually regarded as having no effect on other cell deaths. Here, this study explored whether the addition of Nec-1 has an effect on cell death induced by simulated ischemia injury in rat tubular cell line NRK-52E. In addition, we also investigated the mechanism of Nec-1 attenuates cell death in this renal ischemia model. The NRK-52E cells were i...

متن کامل

Hypoxia-reoxygenation induced necroptosis in cultured rat renal tubular epithelial cell line

Objective(s): The aim of this study is to explore the potential role of hypoxia/reoxygenation in necroptosis in cultured rat renal tubular epithelial cell line NRK-52E, and further to investigate its possible mechanisms.Materials and Methods: Cells were cultured under different hypoxia-reoxygenation conditions                        in vitro. MTT assay was used to measure the cell proliferation...

متن کامل

Ferulic Acid Attenuates TGF-β1-Induced Renal Cellular Fibrosis in NRK-52E Cells by Inhibiting Smad/ILK/Snail Pathway

Renal fibrosis is a common cause of renal dysfunction with chronic kidney disease. Central to this process is epithelial-mesenchymal transformation (EMT) of proximal tubular epithelial cells driven by transforming growth factor-β1 (TGF-β1) signaling. The present study aimed to investigate the effect of Ferulic acid (FA) on EMT of renal proximal tubular epithelial cell line (NRK-52E) induced by ...

متن کامل

Curcumin suppresses AGEs induced apoptosis in tubular epithelial cells via protective autophagy

Renal tubular cell apoptosis and tubular dysfunction is an important process underlying diabetic nephropathy (DN). Understanding the mechanisms underlying renal tubular epithelial cell survival is important for the prevention of kidney damage associated with glucotoxicity. Curcumin has been demonstrated to possess potent anti-apoptotic properties. However, the roles of curcumin in renal epithel...

متن کامل

Saikosaponin-d protects renal tubular epithelial cell against high glucose induced injury through modulation of SIRT3.

Saikosaponin-d (Ssd) is one of the major pharmacologically active molecules present in Bupleurum falcatum L, a medical herb against inflammatory diseases in the traditional Chinese medicine. In the current study, we investigated the protective activity of Ssd on diabetic nephropathy along with the underlying mechanisms using renal tubular epithelial cell line (NRK-52E). Our study showed that hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017